JSJ decomposition of knot exteriors, Dehn surgeries, and the L-space conjecture

Ying Hu, University of Nebraska Omaha

Joint with Steve Boyer, Cameron Gordon
Oct 01, 2023
2023 AWM RS: Progress in low dimensional topology. We thank NSF DMS 2113506 for the travel support.

Background

Three properties (LO, CTF, NLS)

M is a closed, connected, orientable, irreducible 3-manifold.
(LO) $\pi_{1}(M)$ is left-orderable:

- \exists a strict total order $<$ on $\pi_{1}(M)$ satisfying, for any $a, b, c \in \pi_{1}(M)$,

$$
a<b \Leftrightarrow c \cdot a<c \cdot b .
$$

- For example
- \mathbb{Z} is LO.
- Finite groups are not LO.

Three properties (LO, CTF, NLS)

(CTF) M admits a co-orientable taut foliation.

- A (co-)orientable foliation \mathcal{F} is a decomposition of M into a disjoint union of orientable surfaces.

Example. A surface bundle over S^{1} is foliated by the fibers.

- Every orientable closed 3-manifolds has a orientable foliation (Lickorish, 65).
(NLS) M is not an L-space.
An L-space is a \mathbb{Q}-homology sphere who Heegaard Floer homology is "minimal".

The L-space conjecture

Conjecture (Boyer-Gordon-Watson, Juhász, 10s)
M is a connected, compact, orientable, irreducible 3-manifold.

$$
L O \Longleftrightarrow C T F \Longleftrightarrow \text { NLS }
$$

Known:

- $C T F \Longrightarrow$ NLS
(Ozsváth-Szabó 04; Bowden, Kazez-Roberts 15)
- Conjecture holds for graph manifolds.
(Eisenbud-Jankins-Neumann 80s, Naimi 90s; Stipsicz-Lisca 05; Boyer-Clay, Hanselman-Rasmussen-Rasmussen-Watson 15)

L-space conjecture, toroidal manifolds, slope detections

M is a toroidal Q-homology sphere.

- M is called toroidal if \exists an incompressible torus in M.

The basic idea:

- Cut M open along incompressible tori:

$$
M=\sqcup M_{i}
$$

- M has the property $*$ if the $*$-detected slopes are matched along the gluing map, where $* \in\{C T F, L O, N L S\}$. (Hanselman-Rasmussen-Rasmussen-Watson 15, Boyer-Clay 21, Boyer-Gordon-H. 21)

Study LO and NLS surgeries on satellite knots

Cut along a single torus

- Let $K=P\left(K^{\prime}\right)$ where K^{\prime} is the companion knot and P is the pattern.
- We view $K(r)=X\left(K^{\prime}\right) \cup_{T} P(r)$

Figure 1: Whitehead double
Theorem (Boyer-Gordon-H. 23)
If P has winding number zero, then $\pi_{1}(K(r))$ is LO and NLS unless r is a cabling slope of K.

Cut along multiple tori

Figure 2: Composite knot

- If $K=K_{1} \# K_{2}$, then

$$
K(r)=X_{1} \cup_{T_{1}} Y(r) \cup_{T_{2}} X_{2}
$$

where $Y(r)$ is the r-filling along $\partial X(K)$.

Cut along multiple tori: the main result

- The JSJ graph of a satellite knot K is the rooted tree dual to the JSJ tori. The root is the piece that contains $\partial X(K)$.

Figure 3: JSJ graph of $K_{1} \# K_{2}$
Figure 4: Rooted interval

Theorem (Boyer-Gordon-H.)

If the JSJ graph of the knot exterior $X(K)$ is not an rooted interval, then $K(r)$ is LO and NLS for any non-cabling slope r.

- All non-meridional surgeries on a composite knot is NLS. (Krcatovich, 15)

CTF surgeries on satellite knots

A key result used in our proof

Theorem (Boyer-Gordon-H. ,21)

Let μ be the knot meridian of a nontrivial knot K in S^{3}.

- μ is $*$-detected if $* \in\{L O, N L S\}$.
- μ is $C T F$-detected if K is fibered.

CTF surgeries

- We can prove the same results for CTF surgeries, with an additional fibering assumption.

Conjecture (Boyer-Gordon-H. ,21)

The meridian μ of a nontrivial knot K in S^{3} is CTF-detected.

- For composite knots,

Theorem (Delman and Roberts, 20)
If $K=K_{1} \# K_{2}$ and $K_{i} \in\{$ fibered, alternating, Montesinos $\}$, then $K(r)$ is CTF for any $r \in \mathbb{Q}$.

CTF detection

Figure 5: $\mathcal{F} \cap \partial X(K)$

Thank you!

